

MAVIR-OVRAM-JKV-0253-00-2012-11-07

Hungarian Transmission System Operator Company Ltd. (MAVIR ZRt.) Relay Protection and Telemechanics Department (OVRAM) Relay Protection Laboratory

Testing laboratory accredited by the Hungarian Accreditation Board (NAT) with reference number NAT-1-0967/2012.

Address: Anikó u. 4.

Budapest

H-1031 Hungary

Test Report

Without written permission of the issuing authority this report may be copied only in its full extent!

The test results apply only to the equipment actually tested!

Report No: 26/2012

No of pages: 9

Equipment under test (EUT): MAB3 control equipment

S/N: 1241020000017

Manufacturer: Infoware ZRt.

2310 Szigetszentmiklós, Határ út 22.

Site of tests:

Date of tests:

16-17 October 2012

Test report issued:

26 October 2012

Mr. Zoltán Nemes

Mr. Jenő Hanti Mv

Tests supervised by:

Mr. Zoltán Hirsch

Contents

Report No.: 26/2012

1.	Test equipment used	.3
2.	EUT technical data	. 4
3.		
3	3.1. Insulation tests according to MSZ EN 60255-5:2001	
	3.1.1. Impulse voltage test	5
	3.1.2. Dielectric test	. 5
	3.1.3. Insulation resistance measurements	. 6
3	3.2. Electromagnetic disturbance (EMC) tests	
	3.2.1. 1 MHz damped oscillatory wave test according to MSZ EN 61000-4-	
	18:2007	. 6
	3.2.2. Electrostatic discharge tests according to MSZ EN 61000-4-2:2009	
	3.2.3. Radiated electromagnetic field immunity tests according to MSZ IEC	
	61000-4-3:2006	. 7
	3.2.4. Electrical fast transient/burst immunity tests according to MSZ EN 61000	_
	4-4: 2005	. 7
	3.2.5. Surge immunity tests according to MSZ EN 61000-4-5:2007	. 8
	3.2.6. Testing with conducted disturbances induced by radio frequency fields	;
	according to MSZ EN 61000-4-6:2009	
	3.2.7. Power frequency magnetic field immunity test according to MSZ EN	
	61000-4-8:2010	. 9
4.	Overall assessment of the tests	. 9

1. Test equipment used

Report No.: 26/2012

Function insulation tester insulation resistance	Manufacturer Associated Research	Type HY POT™ II 3565D	Serial No 9093218
meter impulse voltage	METREL	TeraOhm 5kV	10537
tester multi-function	Haefely	P6R	082 773 – 09
EMC test generator coupling network DC power supply oscillatory wave	EM Test EM Test Relé GM	UCS 500 M4 CNV 504N5.3 UNT 1	0304 - 45 V1143110998 840910
generator electrostatic discharge	EM Test	OCS 500 M6	0104 – 07
generator conducted disturbance	EM TEST	dito	reg. no: 08225
generator coupling/decoupling	EM Test	CWS 500	0701 – 01
network coupling/decoupling	EM Test	CDN-M3-1	0006235C
network GTEM cell signal generator amplifier amplifier directional coupler	EM Test T-Network HAMEG Frankonia OPHIR	CDN-S9 Piramis 3 HM 8135 FLH-50A 5142F	000651001009 01/2010 061010034 1090 1019
0,01-1000 MHz directional coupler	TESEQ	DPC 0100A	29405
800-3600 MHz power transducer field probe	BIRD NARDA	100-CC-FFN-30 PM 6630	- 000WX00619
0,1-3000 MHz optical decoupler operation and	NARDA NARDA	PMM EP 330 PMM OR03	101WX9057 020WX00911
calibration software analog multiméter analog multiméter	T-Network Ganz Ganz	RFI_SW_PM_V3_1 GANZUNIV-1 GANZUNIV-1	- 21126 65212

2. EUT technical data

Report No.: 26/2012

Relevant technical data provided by the manufacturer:

Nominal aux. voltage: 230 V AC, 220 V DC

MAB3		S/N:	1241020000017
1. CPU912	Central processing unit		1214011200093
2. PSU25	230VAC/220VDC aux. power supply unit		991000041
3. DI08	8 ch input unit		1225010050015
4. DI16	16 ch input unit		1228011150241
5. PQT3-v2	analog input unit		1135059990053

Test equipment:

- Dell latitude notebook type: D530 S/N: FFS814J

- vedst_ns sw ver.: 1.42b172

3. Tests performed

During the tests the ambient temperature in the laboratory was 24.9 °C and the relative humidity was 37.2 %.

3.1.3. Insulation resistance measurements

Independent circuits tested:

aux. power supply input, binary inputs, CT inputs, VT inputs

Report No.: 26/2012

The measured Insulation resistance values were above 800 M Ω at each standard testing variations.

The uncertainty of the test: $0.5 M\Omega$

Test result: passed

3.2. Electromagnetic disturbance (EMC) tests

During the EMC tests both EUT's were energized with their nominal aux. power supply voltage. The relay output and binary input function was checked during and after the tests.

3.2.1. 1 MHz damped oscillatory wave test according to MSZ EN 61000-4-18:2007

Independent circuits tested:

aux. power supply input, binary inputs, CT inputs, VT inputs

Test voltage: 2,5 kV in common mode, 1 kV in differential mode

Disturbance duration: 2 s

The uncertainty of the test: 38 V

Test result: passed

6/9

3.2.2. Electrostatic discharge tests according to MSZ EN 61000-4-2:2009

Test method:

contact discharge to the metallic parts of the front panel

test voltage: 6 kV

Report No.: 26/2012

The uncertainty of the test: 420 V

Test result: passed

3.2.3. Radiated electromagnetic field immunity tests according to MSZ IEC 61000-4-3:2006

Test field intensity: 10 V/m

Frequency ranges: 80 MHz – 1 GHz

1,4 GHz - 2,7 GHz

Spot frequencies with a duration of 10 s:

80 MHz

160 MHz

380 MHz

450 MHz

900 MHz

1850 MHz

2150 MHz

The uncertainty of the test: 10 % in the range 80 - 300 MHz, 15 % in the range 300 MHz – $2.7~\mathrm{GHz}$

Test result: passed

3.2.4. Electrical fast transient/burst immunity tests according to MSZ EN 61000-4-4: 2005 (withdrawn standard)

Independent circuits tested with CDN:

aux. power supply input, binary inputs, CT inputs, VT inputs

Test voltage: 2 kV 5 kHz in common mode

MAB3 control equipment

Report No.: 26/2012

Independent circuit tested with capacitive coupling clamp:

Ethernet cable

Test voltage: 2 kV, 5 kHz in common mode

The uncertainty of the test: 0,082 kV

Test result: passed

3.2.5. Surge immunity tests according to MSZ EN 61000-4-5:2007

Independent circuits tested:

aux. power supply input, binary inputs, CT inputs, VT inputs, Ethernet cable

Test voltage: 2 kV line-to-earth, 1 kV line-to-line

The uncertainty of the test: 0,082 kV

Test result: passed

3.2.6. Testing with conducted disturbances induced by radio frequency fields according to MSZ EN 61000-4-6:2009

Independent circuits tested:

aux. power supply input, binary inputs, CT inputs, VT inputs, Ethernet cable

Frequency range: 150 kHz - 80 MHz

Spot frequencies: 27 MHz, 68 MHz

Test voltage: 10 V

The uncertainty of the test: 7 mV

Test result: passed

3.2.7. Power frequency magnetic field immunity test according to

Test field intensity:

Report No.: 26/2012

30 A/m continuous 300 A/m for 3 s

The uncertainty of the test: 0,61 A

MSZ EN 61000-4-8:2010

Test result: passed

The reported expanded uncertainty is based on a standard uncertainty multiplied by a coverage factor k = 2, which for a normal distribution provides a level of confidence of approximately 95%.

4. Overall assessment of the tests

The EUT complies with the requirements.

Mr. Tamás Veréb head of department

Veril Y